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Abstract

The Boussinesq system describes weakly nonlinear dispersive long waves
in plasmas and incompressible irrotational fluids. This study presents some
results regarding the structure and behavior of a system of equations that
vield the spatial structure of triad interactions in the Boussinesq system.
Such a system forms part of a model for the formation and evolution of sand
ridges on the continental shelf. The aims of this study are to provide some
insight into the behavior of the triad system and into the sand ridge model

in particular.



1 Introduction

A model for the formation and evolution of three-dimensional longshore sand ridges
on the continental shelf was proposed in [1] and [2]. It identifies weakly nonlinear,
dispersive shallow-water waves as the agents of formation of these structures. It
is assumed that the waves travel mainly perpendicular to the shore (i.e., in the
direction) and have weak spanwise y dependence, thus

1/2

y — o'y gu — a4, (1)

These waves, for bottom topographies h = 1+¢ f(xy) with very slight slope changes

(i.e., e < 1), are governed by the dimensionless regularized Boussinesq system

wk VoAb + )] - LBV [V (R)] = 0

u + o(u-Vju+ Vg =0, (2)

where n(x,y) is the amplitude and u(z,y) is the velocity of the water waves. The

parameters o < 1 and 3% < 1 are the degree of nonlinearity and dispersion in the

waves, respectively. The bottom evolution is given by
Gty T) = F(U A4
ar"\ Por T Y (3)

h(z,y,0) = H(z,y),
where U and V' are the longshore and spanwise drift velocity components in the
boundary layer and are themselves functions of the water wave amplitude.

In order to study the model’s behavior and predictive qualities, the dynamics of



the surface waves were simplified by assuming a crude but still very usefull ansatz

ule, Xoy,t) = Tiolai(X,y) + ad;(X, )]0 e n
4
+ 300X, y) + aBi( X, y)]el Rt 4o,
where c.c. stands for complex conjugate of the expression immediately preceding
its appearance. The a’s are the complex incident wave amplitudes, and the b’s

are the complex reflected wave amplitudes. The reality of the physical variables

implies that a_; = a7 and b_; = b%. The spanwise velocity at the surface is

o(e, X,y.1) = T —ilan(X,y) + O(a))elm=0 4 c.e.

+ 30— [6y(Xsy) + Oa)]e Rl e,

(5)

To lowest order, ug; + 10, = 0. Hence, an expression for the surface amplitude is

readily available:

+3 (X, y) + aB(X,y)eThem0 1 cc, (6)

A solution of the form given by Equations (4), (5), and (6) is valid, provided that

the following relation holds between the frequency w and the wavenumber k:
wl— —— =0, (7)

which gives the dispersion relation for the j-th mode, the positive root k; corre-

sponding to the shoreward-directed wave, and the negative to the seaward wave.



In addition, a compatibility condition must be satisfied, which then yields the

equations for the spatial evolution of the surface modes, namely,

— iKyary, + iKsf(z,y)ar + iKse 0 ata,

G2y — i Kaagy +iKaf (2, y)as + i Koet0%a?
by + 1 K1byyy — tKsf(x,y)by — i[(5€+i5xbi‘bz

boo + 1Ksboy, — iKyf(2,y)by — i Kge 0752

ar(x =0,y)

ax(r = 0,y)
bi(x = M,y)
by(x = M, y)

plus appropriate boundary conditions on y = 0 and y = N.

The real K and L

constant coefficients are O(a, ¢); they are described in [1] and [2] and given in the

appendix. The real parameter 6 < 0 is the detuning from perfect resonance, that

is, wy = 2wy and ky = 2k — 0.

It the boundary conditions By and By of the reflected wave are small, the re-

flected component is negligible. The triad system is then

iKyay, +iKsf(z,y)a + iKse " ata,
G2y — i Koty +iKaf (2, y)as + i KoeT%a?
Cll(l' = 07 y)

a2($ = 07 y)

This study is devoted to the formal and analytical results relevant to discerning



the behavior and structure of the triad system, Equation (9). Although the linear
part of the triad system is similar to its counterpart in the nonlinear Schrodinger
equation, the nonlinear terms endow the Equation (9) with properties and behavior
much unlike the nonlinear Schrodinger equation.

To give the reader an idea of the rich structure of the triad system, we solve
Equation (9) in the following examples using periodic boundary conditions in y.
The bottom is flat in all the examples; that is, f(x,y) = 0. The graphs were
generated by using the fixed-point method [3], in which the linear operator is
discretized using the Douglas scheme. The discretization yields a Jacobi matrix. In
the graphs, two periods in y are plotted in tandem, the calculation being performed
on only one of the two periods. The domain has M = 240 and N = 150, where
M and N are respectively the length in x and breadth in y, and the fundamental
frequency used was wy; = 1.2. The parameters were a = 0.1 and § = 0.18. The
solution to the case with boundary conditions A; = 0.540.1sin(=7y) and A; = 0,
with 6 # 0, is illustrated in Figure 1. For the same parameters, but with the
boundary condition A; = 0.1sin(%7y), the outcome is shown in Figure 2. Figure
3 shows the outcome when ¢ has been forced to zero. Finally, Figure 4 illustrates
the case with quasi-periodic boundary conditions A; = 0.1[sin(s7y) + sin($7y)]
and A, = 0, with the same parameter values as in Figure 3, except that 6 # 0.
The numerical solution of these examples suggest that solutions to the triad system

may be stable and periodic.



Figure 1: ay(z,y) for A; = 0.5+ 0.1sin(%7y), A, = 0, and 6 # 0.
2 Hamiltonian Structure of the Triad System

We adopt the following scaling,

v Ks(KeBo)'Pr y — K (KoEo) Yy AQ — b "
5446190 10
\/5(11 \/5112

(IX”5E0)1/2 (IX”6E0)1/2 ?

U UV —

in order to facilitate the derivation of the Hamiltonian structure of the triad sys-
tems. With compact support in the y direction for both v and v and a flat bottom
(i.e., h = 1), the system is

Uy — 1K Uy, + ie_iAqu*v

vy — 1 Kvy, + ie"’iAquZ/Z = 0. (11)



Figure 2: ay(wz,y) for A; = 0.1sin(s7y), A2 = 0, and 6 # 0.

The Lagrangian density is found to be
296 ) _ K |2 | - K02, (12)

L = tuzu™ —iuju+ 10,0 — wiv — R[(u)

where R stands for “the real part of”, and the canonical momenta are

Hl _ oc L gax

= = v
o= 95 =

" .
H2 = % = 0.



Figure 3: a(x,y) for boundary conditions A; = 0.1sin(F7y), A; = 0, and detun-

ing parameter 6 = 0.

The requirement that L = [ Ldy be stationary yields the Euler-Lagrange equations,

which in turn lead to (11):

aa’i — %gi =, + Kyuy, — e‘iAQl’u*v = 0
Jdc 4 0c _ - _ +iAQe, 2 _ (14)
% dym = 1V, + [szyy (& u /2 = 0

and its complex conjugates. The Hamiltonian H and its density H are given by

= /de

= R[(w) e R 4 K |uy P+ Koo, |2 (15)
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Figure 4: Solution for quasi-periodic boundary conditions: A; = 0.1[sin(F7y) +
sin(£7y)], and Ay = 0. § # 0.

Note that the Hamiltonian is not conserved, that is,

oL OH

Friair (16)

except when AQ) = 0. The Hamiltonian, in terms of the conjugate momenta, is
H = R[5 2% 4 K 1L, P + K| Iy, . (17)

The Hamiltonian admits a Poisson structure, defining the Poisson bracket as

0A 0B  0A aB 8A oB  0A 0B
|+ c.c. / dy

(4.8) = [yl o~ 91 o s o, ~ am, 900 T oo (18
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so that the evolution of a dynamical variable A is given by

A, = {A, H}. (19)

In fact, Equation (11) is recovered if A is replaced by v and v in the above equation:

oH :
up = {u, l} = 5= = LTI B9 11,
1
— urveiAes + iy,
H :
v, ={v,H} = ST = —i(HT)ze‘HAQl’/Z — 113,
2
= iuze""iAQl’/Z + ivy,y. (20)
In addition,
OH
Hlac — {Hl, H} = _a_
u
OH
’ UL, 1) v (21)

yield the complex conjugate equations.
Equation (11) may be recast in the form of an autonomous system. For such a

—iAQx

system, the Hamiltonian is a conserved quantity. Let © = ve , and substitute

in Equation (11), resulting in

Uy — 1Kty + 00 = 0

Oy — 1 K90y, +1AQD +1u?/2 = 0. (22)
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The Hamiltonian corresponding to Equation (22) is

B = RIw 5] + Ky [+ Kl 5, [+ AQI5 /2 (23)
As a check:
uy = {u, H} = _217; = —u'0 + 1Ky,
o, = {0, H} = —gg = —1AQV — i’ /2 + i Kyvy,. (24)

Hence, the above substitution leads to a Hamiltonian with the property

dH

=0 (25)

for any AQ.
When wavelike solutions are assumed to exist, another conserved quantity of

this Hamiltonian system is

1 ~ ¢ * SN~k
Sul 4 10P) = =SSRy + Koy, (26)

where § reads as “the imaginary part of.”
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3 Linear Stability Analysis

The stability of the triad system to small perturbations may be inferred by slightly

perturbing the system. Let

ai(z,y) = o(x)+ ((z,y)
ag(:z;,y) = ¢(x)+€(xvy)v (27)

where ||, |£]| are both small. Further, assume f(x,y) = f(x). Substituting

Equation (27) into Equation (9) leads to the linear system

o — iK1 Cyy + iKsf(2)( 4 iKse (6" 6+ (") = 0

Er — 1K, + 1K f(2)¢ +i2Kee™ ¢( = 0, (28)
with

bo +iKsf(2)d + iKse ™7 ¢"p = 0

e + IRy f(2)) +iKee™™¢? = 0. (29)
Separating the real and imaginary parts, let

( = wHat

£ = q+ir, (30)
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and define

a1 = P, sindx — Y, cos Ox
ay = Y;sindx + P, cosdx
a3 = ¢.sindx + ¢; cosdx

ay = ¢;sindr — ¢, cosdx, (31)

where the subscripts r and ¢ refer to the real and imaginary part, respectively, of
the quantity.

If we substitute Equation (30) and Equation (31) into Equation (28), the system
is now

u, — A -Jdyu+B- flz)u+C-u=0, (32)

with u = [w,?,q,7]’ and the matrices

0 0 0 -k,

0 0 0 —Ky




15

which are constant, and

[(5 aq [(5 [8%) [(5 a3 [(5 g
[(50[2 —[(50é1 —[(50é4 [(50[3
C = , (35)
2[(60é3 2[(60é4 0 0
—2[(60é4 _2[(6053 0 0

which is a function of x. Assume a separable solution, that is, u = X(2)Y (y).
Thus,

u = Uetidy exp|—A - Az]exp|—B /x f(s)ds — /x C(s)ds]. (36)

The vector U is constant whose value depends on the conditions at « = 0. It is

helpful in what follows to look at this solution in component form:

w = Uethy exp[K1AZx] exp[K3 /x f(s)ds — /x C1(s)ds]
t = Upe?Vexp[— K A2x]exp[— K3 /x f(s)ds — /x Cs(s)ds]
g = Use™ ¥ exp[KyA2z] exp|K, /x f(s)ds — /x Cs(s)ds]

ro= Uspe™Vexp[—KyA2z]exp[— K, /x f(s)ds — /x Cy(s)ds]. (37)

It is apparent from these expressions that growth and decay from spanwise pertur-
bations of the real part of the modes depend on the spectrum of their imaginary
counterparts, and vice versa. In the most general case the solutions will become

unstable if any one of the following conditions is met:

—uy + Ky (p3 —1/22):1;—|—K3/ f(s)ds —/ Ci(s)ds > 0
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—voy + Ky (p] — vi)z — Ks /x f(s)ds — /x Cy(s)ds > 0
—v3y + Ko(ph — vi)x + K,y /x f(s)ds — /x Cs(s)ds > 0

—vgy + Ko(pi — vi)e — Ky /x f(s)ds — /x Cy(s)ds > 0, (38)

where A; = p; 4 iv;. Typically the system is prepared in such a way that {(z =
0,y) =0 and r(x = 0,y) = 0. When A; are purely real, the onset of instability

occurs when either

xr

K /x f(s)ds —
K,y /x f(s)ds —

/ Ci(s)ds > 0, or
/x Co(s)ds > 0. (39)
Plots of Cy and C5 for f(x) = 0, A; = 0.5, Ay = 0.01, and with parameters

a=0.1, 8 =0.1, and wy; = 1.2 are shown in Figures 5 and 6.

4 An Exactly-Solvable Case

When the bottom is flat and the boundary conditions are constant, the triad system

becomes
a1y + iKse=%%ata, = 0
7 251’ 2
a9y + 1 KgeT9%%a? = 0
1 (40)
a(x=0,y) = A

az(x =0,y) = A,
where A; are constants. The above system is familiar to the nonlinear optics

community; cf. [4]. In what follows we adapt some of the results of Brekhovskikh
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Figure 5: Typical values of Cy, dashed line, and [* Cy(s)ds, versus z, for a flat

bottom.

and Goncharov [5] to the problem at hand.

Letting a; = A;(x)exp;(x) in Equation (40), and replacing

X = Aysin ) (41)
Y = Ay cos ) (42)
7= A (13)

with = 26, — 0, + oz, we obtain the statement of conservation of energy

Ks(X*+Y?) 4+ KeZ = Ey, (44)
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Figure 6: Typical values of Cs, dashed line, and [* Cs(s)ds, versus z, for a flat
bottom.
and the equation

dX  Ks(X?+3V?) =8V — By (15)
dy — (6 —2K;Y)X ’

which may be used to investigate the structure of the phase plane of A;. The
dynamics of A; follow immediately from the conservation of the energy constraint,
Equation (44). Three cases, depending on the size of the detuning parameter 9§,
are investigated. A plot of the detuning parameter as a function of frequency and
B is shown in Figure 7 for the dispersion relation given by
12
2
W' ———=10 46

1+ % 322 ’ (46)

where ky = 2k; — 6, and wy = 2wy. When 6/2y/FEy ~ 0, the phase plane is

shown in Figure 8. Note that dX/dY = 0 and X = 0 give the two centers,
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Figure 7: Detuning parameter dependence on w; and 3 for the water wave problem.

at (X,Y) = (0,£V/Ey//3K5). Setting Y = 0, dX/dY = 0 gives the radius of
the bounding circle, at \/Fo/v/Ks, beyond which the orbits diverge. Additionally,
there are two saddle points at (X,Y") = (&v/Fo//K5,0). Motion along the limiting
circle takes place in such a way that A; = 0 and Ay = Ey/\/Ks. If, for example,
A1 # 0 and A, = 0 initially, motion in the plane takes place along the line Y = 0
up to the limiting curve, the phase  is then equal to 7/2. From the imaginary
part of the original system, it may be deduced that the variation of € in this limit
is described by

0, — 2K B cos Q) = 0. (47)

The transition from the state sin) = 1 to sin{) = —1 occurs along the limiting
circle. The distance x at which this transition occurs is infinite, but it can be

estimated by solving Equation (47). The solution is

Q = tan™'exp (—2[(5Eé/2$) tan (), (48)

and hence an estimate of the spatial length at which the energy of the first mode
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A

Figure 8: Phase plane for Ay for 6 ~ 0. X axis is vertical.

makes an almost complete transition to the second mode is

L~ 1/2KE?, (49)

which subsequently will be seen as related to the “interaction length.” The varia-

tion of the amplitude of A, along Y = 0 may be discerned from

Agls — [(5143 - Eo, (50)

which is obtained by eliminating 7 from Equation (40) and making use of the
energy relationship.

The solution of Equation (50) is

Ay = (Eo/Ks)"* tanh[ K} EY (@ — a0)), (51)
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with Ay, = (EO/K5)1/2 tanh[(K5E0)1/2:1;0]. At the beginning of the growth process,
A; > Ay so that sin ) = 1 and the growth of the second mode is independent of
Asz. With the solution of A, in hand, using Equations (44) and the first expression

of Equation (40), we can show that

Ay
\/1 — tanh? [I(;/ZEé/Zxo]

Aq(x) = sechy/ KsEo(x — x9). (52)

From this solution we conclude that irreversible energy conversion takes place for
6 = 0. This solution is not stable, however, since the stationary states are reached
by motion along the limiting curve on the phase plane. The smallest of ¢ invari-
ably results in motion along homoclinic orbits with consequent oscillations in the
amplitude of A; and A,.

For the case 6 # 0, but small compared to 2E3/2, the curves have similar

structure to the case previously discussed. The phase is described by
O, + 6 — 2K5EY? cosQ = 0. (53)

Consequently, the interaction length is decreased:

L= ! (54)

VAKSEY? — 5%

With regard to the sand ridge model, the interaction length is correlated to the

inter-bar spacing. From Equation (53) it is seen that the bar spacing will decrease
for higher frequencies in the water waves.

The centers are now at (X,Y) = (0 i[1 4 /1 + 128550]) "and the line Y = 0

? 6 K5 52
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)

is no longer the line of symmetry. Also, the line YV = e does not generally

intersect the limiting circle, as can be seen in Figure 9. Instead of two pairs of

=7

o

Figure 9: Phase plane for A, for 5/2E3/2 < 1. X axis is vertical.

stationary solutions, only one is possible, and the energy is concentrated mainly in
the lower mode. The two modes interact weakly, and the spatial beats get smaller
and shallower as the detuning paramenter is increased. In fact, when 5/2Eé/2 > 1,
Aq(x) ~ Ay, and Ay(0) = Ay, the first two terms in Equation (53) are dominant,
so that the phase is

Q= dx+7/2. (55)

Substituting the above expression into the second expression of Equation (40), we

can show that

K
Ay = Ay + %Af sin dx. (56)

The phase portrait for this case is shown in Figure 10.
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Figure 10: Phase plane for A, for 5/2Eé/2 > 1. X axis is vertical.

We remark that of the three cases considered here, only the first two are physi-
cally relevant to the sand ridge generation problem. The large detuning parameter
case violates assumptions on the size of the wavenumber /frequency in the model.
Much is to be learned about the triad system, however, from looking at the high-
frequency case in some detail.

When w1 is large (or, equivalently, when 6 is large), the amount of energy from
the first mode transferred to the second one may be quite small. As was just
mentioned, in this case the first mode has nearly constant amplitude. Assume that
the boundary conditions are constant, i.e. a;(0) = A;. Thus, a1(x) ~ A;, and the
second mode expression of Equation (40) may be integrated, yielding

K

~ 7,4365% (57)

az(x)
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Substituting Equation (57) into the first mode equation, we get

1K
aru(2) ~ an | AR, (58)

which can readily be integrated to yield

ar(x) = A€, (59)

where o = K5K¢/6| A7|. Thus, ai(x) is approximately sinusoidal, with a wave-
length proportional to | A?].
For a nonflat bottom, which is typical of the bottom topography in the ocean

setting, an exact solution is not possible. Consider, however, the case

Alx — [(5141142 sin ) + XlAl =0
(60)
Agls + [(GA% sin ) + X2A2 == 0,

where x; represent constants. An analytical solution of this system is not possible,

unless Y1 = Y2 = X, in which case, conservation of energy is given by
[(514% + [(6143 == E0€_2X$. (61)
Introducing new variables

X = XEPexe

= YE/ e (62)
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and the reduced distance
¢ =2E(1 — ™) /x, (63)

assuming ¢ = 0, we obtain, using Equation (61) the system’s phase plane equation

dX 1-X"—37"

s T ) (64)
dY XY

which has the same structure in the phase plane as that shown in Figure 8. The
important distinction is that ¢ is related nonlinearly to . Thus, the damping of

the waves is characterized by
¥ = v/ (2K EY). (65)

For Y < 1, there is weak damping, and the waves travel a considerable distance
before the energy is fully dissipated. On the other hand, if Y > 1, only a small arc
of the trajectory in phase plane is traversed. The wave substantially attenuates in
a short distance. The relevant case, at least approximately, to the oceanic problem
is the former case, in which the size of the bottom makes the coefficient analogous
to y in the above presentation of O(«) in size relative to the other terms in Equa-
tion (60). We can infer from this result that milder average slopes in the bottom
topography favor the formation of sand ridge fields with many bars and that the

separation between the bars becomes shorter as the waves shoal.

The solution for small AQ) and large AQ) is graphically depicted in Figure 11. In
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Figure 11: |ay|* dependence on the detuning parameter. In all cases |a;|*(z =
0) = 1. The interaction length and the power transferred to |as |2 decreases as AQ)

increases.

the first case, the interaction length is relatively insensitive to A() and substantial
power transfer occurs, the interaction length is very large. On the other hand, for
AQ > 1, there is less power transfer and the interaction length is shorter. Figure
12 shows how the interaction length varies nonlinearly with AQ. Figures 13 and
14 illustrate the dependence of the interaction length on the size of the nonlinear
parameter « and the dispersion parameter 3. The relevant size of the parameters
and 3 in the sand ridge case is as high as 0.15 for a and 0.005 < 3 < 0.15. Hence,
from the graphs it may be inferred that the interaction length is more sensitive to

dispersion than to nonlinearity for the above-mentioned ranges of o and /.
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Figure 12: Interaction length dependence on the nonlinear parameter A(Q). The

detuning parameter is scaled so that as AQ) — 0, m — 1.

5 High-Frequency Behavior

As a way to assess the evolution of waves with periodicity in the longshore direction,

suppose

ay(z,y) = ul(z, y)ei(k”_wlt"'lly)

as(w,y) = vfw,y)elhmartiy) (66)
Then the system (9) is now

e + K u i Kuroe (000 — g (67)

v, 4 i Kyv + i Kgu2et 0000 — g (68)
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Figure 13: Interaction length dependence on the nonlinear parameter «.

where v = I, — 2[4, which can be zero. We now consider the high-frequency case.

For wy large, u(z,y) ~ u®. Hence Equation (68) may be integrated, yielding

[&’6u26i(7y+51’)
=2 69
° 6+ BK; (69)

0

assuming v(z = 0,y) = 0 and u(x = 0,y) = u” constant. Using this expression in

Equation (67), we have
K5 Kg|u®[*x

U(l’, y) = uo exp[—ll%[(ll' + Zw] (70)

Hence v oscillates with lines of constant phase normal to the tan_l(%) direction,
where the angle is taken with respect to the shoreward direction. When [, = 2[4

exactly, the direction of constant phase orthogonals is the shoreward direction. On
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Figure 14: Interaction length dependence on the dispersion parameter 3.

the other hand, u oscillates in the x direction, with a repetition length

6+ BK,

L
v 27

{K5Ko|u®|* — (6 + BK,)PK, )L (71)
Furthermore, v can develop a singularity when
§+ 1Ky =0, (72)

that is, when I, = +4/—6/ K3 (note that 6 < 0). In terms of the y component of

the wavenumber, the singularity occurs when

—20k

(a4

ZQZZE

(73)
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An [, of such value is not at all unreasonable to consider. There is a change in sign
in v on either side of the location at which the singularity is predicted.

Yet another interesting feature is the situation when

102 = (6 + K52 Ky /K5 Ke, (74)

again, a reasonable value. In such an event, the modulation of u practically disap-

pears. Then
u(z,y) o u® = £/(8 + BK,) 2K [ K5 Ko (75)
and
12[’ 2(51’+’}/y)
v(y) =~ (76)
15

which is a simple sine wave. Hence, one could conceivably use modulations in the
y direction to nonlinearly produce linear sine wave signals of the second harmonic
with amplitude given by 2. If [, = 2[; exactly, the wave oscillates in the shoreward
direction.

Carrying out this high-frequency analysis further, we can consider the effect of
the bottom topography under special circumstances: the case when f(x,y) = f(y)

leads in a straightforward manner to

[&’6u26i(7y+51’)
6+ BEy 4 Kyf(y)’

v =
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0

again assuming v(z = 0,y) = 0 and u(x = 0,y) = u” constant, and

KsKglu® |’z

u(z,y) = u’ exp[—ilfKyx + i

J: (78)

Thus, the effect of the bottom in this case is to change the amplitude of v and, at
the same time, modulate the oscillations of u. Again, the possibility of a singularity
and a change in sign in v exists.

Finally, the same method may be employed to assess the effect of a mildly
sloping bottom on the high-frequency solution. Assume f(x,y) = va/2, where v
is small. The same procedure leads to

(u0)2K6ei(’yy+5x)
6+ K,yl3

2[(41/ {(
(6 + [,12)2

u ~ ulexp{—i(K\[}

|uO|? K5 Kg

S
¢

[1—2 §+ Kol5)?2% /2 + (6 + Kyld)x — 1}]6_”‘74”’2

|uO|? K4 K5 K

s 2
GrmEr” T e )
2| u® |* Ky K5 Kgv (6 + K,12)2a?
exp — 61 [B) (x — 5 ). (79)

The result is valid only for K,vz? < 1. That is, since K4 is of the same order as
koe, it is valid for @ < O(1/+/keev). To discern what is fundamentally different
about the sloping case, consider the situation in which u° has no y dependence, so

that Equation (79) has the form
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2K, 8422

=i (5 —ibe - 1)]eiHare?
0K KK
u ~ ulexp{i|u®|"KsKez /6 — i( K5 — W#)WCQ}
—2| uY 21(41(51(61, 2
e G e
e o . (80)

From Equation (80) it is readily apparent that v oscillates proportionally to e“sx,

its maximum amplitude §/ K¢ times smaller than u?. The phase will drift quadrat-
ically with distance and proportionally to K,v. The amplitude drops linearly at a
rate proportional to the size of K4v and K3v; the wave decays exponentially at a
rate controlled by the last exponential in the above expression. To properly inter-
pret the decay, recall that |6 > 1 and ¢ is strictly negative in this analysis. The
second term in the exponential implies that decay/blow up would be a possible
outcome of the original model. However, this is an artifice of the present analysis.
If the assumption u(x) ~ constant is violated, the above expressions are not valid.

Thus, for our interpretation to be valid, it is required that 2| u |? K4 K5 Keva /6% < 1.

A very important question that arises in the applicability of slightly resonant in-
teracting triad expansion techniques to oceanic waves is that we may be neglecting
very important side-band modulations. These can be producing interesting struc-
ture, controlling the stability of the primary waves, or affecting very minimally the
structure of the evolving waves. A general result on this issue is forthcoming, but
for now we limit our attention to the high-frequency case. The problem of bands,
rather than isolated modes, and the effect on the evolution of individual waves has

been examined by Hasselmann [6] in the context of deep oceanic waves. Appli-
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cable to the shallow water case considered here, Brekhovskikh and Goncharov [5]
examined this issue, and in what follows their findings are paraphrased.
First, the modal expansion is replaced by the more familiar expression for the

lowest-order velocity

up(x,t) = /Oo aw(x)e” ™ dw, (81)
where ay(2) = a(aw), and af,(z) = a_w(x) since ug is real. Assume ap =
pw exp(tkpx), where ko = k(w) is found by the dispersion relation. Again, re-

ality means that k%, = k_, and p, = p_w. Substituting Equation (81) into the
original equations and using the compatibility conditions, we obtain an expression

for the amplitude of the incident waves:

0 . 00 .
a—xpw = —wzw/— Paps €xp(—tA s0)dq, (82)

where s =w — ¢ and Ay = ¢+ s — kw. If the incoming harmonic wave u(0,t) =
a1(0)e ™1t + ce. (ice., pw(0) = a1(0)6(w — wq) + a(0)d(w + wy)), the spectrum of

u(x,1) remains discrete at any time; the only nonzero components are w, = nwi,

kn = k(wp),n =+1,£2,--- and

aw(x) = Zan(:p)(S(w — wy). (83)

Then Equation (82) yields

0

8_:1;an = —low, Z amale_iA"”"l’, (84)

m
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l=n—m, ANy, =kn+ ki —k,, a, =a}, and ag = 0.
Taking wy as the principal harmonic and éw as the width of the spectral band,
we extend Equation (40) to include the interactions of spectral components of the

wave train with long-wavelength waves. Except for a constant multiplying the

integral, the spectral amplitude equation is

0 , : .
a—xp(w) = —aw /Aw [os 4 Pt —£€ 47 i e €’ "
dk
Ar = ko Fhorve £ horegw # ko F ko, £ 5-lo.6,
dk
tho, £ —lw, ( —w) = kw—c¢'w=[c;(0) — ¢, w= Ay,

dw

where ¢, is the group velocity and ¢, is the phase velocity. Approximating, we

have

Pwi+E T PwitwteE N Py,

P-wi+wte | P4 T Py (86)

and the equation for the amplitude is

%Pw A —ilaw| pw, |26iwaAw. (87)

As was done in the discrete case, assume the frequency is sufficiently high so that
pw, ~ constant. Thus,

T

[en (0) = ¢ (wn)]

(88)

w .
puw(t) & —a—|pw, PeiBwr Ay =
w

Jd¢,

(85)
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The following equation for py, corresponds to such an interaction:

. 2 2 2
— —iA‘fl’d L o w1|pw1 | pw(Aw)
P taw /Aw PePw—g€ < [c1(0) — o (wy)] ’

Cph

(89)

where |w—wq| < Ap. Let a1 = pwAy stand for the amplitude of the principal
harmonic. Then, taking into account the term corresponding to the interactions

with the second harmonic, we obtain, instead of Equation (58),

%al = ia%w?|ay P{AT + w M e (0) — ¢ M (w1)] ' e (90)

Its solution is a; = a;(0)e“”, corresponding to waves with “spatial” shift of o =
—a??|ay |P{AT ot [e;n(0)—¢; " (w1)]7'}. Hence, in the high frequency the main
difference between the discrete and the banded spectrum case is that the latter has
an additional term in the nonlinear shift as compared with the case of Equation
(58).

The conditions for the stability of the triad system and of the full model, as of
this writing, have not been analyzed in detail. However, it is possible to infer from
the results of this section that the stability of the triad system does not depend on
the frequency of the water waves since only weak resonance is possible, which in
turn means that less energy is shifted from the lower modes to the higher ones the

higher the frequency of the fundamental mode.
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6 Conclusions and Suggestions for Further Re-
search

The triad system that forms part of a model for the formation and evolution of
sand ridges is rich in mathematical structure. It is clear from our results that we
have only begun to understand the full meaning of the system.

The high-frequency regime of the system has been considered in greater de-
tail here because results from similar problems, primarily by the nonlinear optics
community, were easily adaptable to our case. The low-frequency regime, which is
more relevant to the sand ridge problem, was considered only in cursory fashion.
Hence, future work will be aimed at gaining a better understanding of the system
in the low-frequency regime.

Several issues require our immediate attention. First, we need to further our
understanding of the refractive behavior of the waves under the action of a fully
featured bottom. As shown in [1] and [2], there are a number of ways in which
refraction occurs in the surface waves. The model’s assumptions place a restriction
on the degree of spanwise dependence of the solutions, and care must be exercised
so as to not violate the assumption, especially when the domain involved is large.
It may be possible, however, even when weak y dependence assumptions are not
violated, for the solutions to lose their stability as a result of severe refraction.
At a later stage in this study we shall pursue this issue, with the hopes of ar-
riving at an estimate of when and how this form of instability occurs. Second, a
comprehensive stability analysis is needed. Evidence from numerical calculations

and of our preliminary analytical work on the subject suggests that the stability is
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controlled by the possibility of a singularity in the denominators of the coefficients
K5 and Kg, by the right combination of parameters (see Figures 15 and 16) or
by the choice of boundary conditions A;. Third, we need to prove the existence
and uniqueness of solutions of the system. Fourth, we need to study properties
related to the system’s Hamiltonian structure. In our preliminary work we found
no evidence of complete integrability. And fifth, we need a thorough study of the
issue of resonance between the surface waves and the bottom topography.

Regarding the full sand ridge model, the most interesting issue is the study
of steady state bottom configurations. Preliminary results exist for the two-
dimensional case [7]; however, this case is far from fully explored. The three-
dimensional case has received no attention.

Further developments on the sand ridge model are planned. In particular, work
is under way to couple the mass transport equation to a full Boussinesq system,
the aim being to consider more realistic water wave spectra as agents of order for
the bottom topography. Additionally, we plan to consider a mass transport model
that enables the inclusion of shear stresses.

On the experimental side, work is under way to compare the model presented
in this series of papers with field data gathered in Fastern Australia and off the

coast of Newfoundland.
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A Appendix

Figure 15: Plot of K5/« versus the fundamental frequency wy, and 3 for the water

wave problem.

Figure 16: Plot of Kg/« versus the fundamental frequency wy, and 3 for the water

wave problem.

The following are constants associated with Equation (8):

[(1 — F1

[(2 — F2
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Ks = DIy
Ky = Dk,
Ks = D5
Ks = D)5,
(91)
with
;o= Ro- g
io= k(1= 355
yo= 1/2k (92)

51 = —kzlkl{kz—k1+w1(f—f+%)}
Sy = 2(ki/ + 2w])/ws.

The constants K5 and Kg are illustrated in Figures 15 and 16, respectively.
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